**Abstract:** We present a Chebyshev-type characterization for the
best uniform approximations of periodic continuous functions by functions
of the class $$ {\cal M} = \{ f(x): \enskip f(x) = \int_0^{2\pi}K(x,y)
h(y)\,dy , \enskip |h(y)| \leq 1 {\rm \enskip a.\ e.} , \enskip y \in [0,
2\pi ) \} , $$ where $K(x,y)$ is a strictly cyclic variation diminishing
kernel.

**Preprint version available:** pdf

Homepage