Approximation by sums of piecewise linear polynomials

Oleg Davydov∗ Fabien Rabarison†

June 9, 2014

Abstract

We present two partitioning algorithms that allow a sum of piecewise linear polynomials over a number of overlaying convex partitions of the unit cube Ω in \(\mathbb{R}^d \) to approximate a function \(f \in W^3_p(\Omega) \) with the order \(N^{-6/(2d+1)} \) in \(L^p \)-norm, where \(N \) is the total number of cells of all partitions, which makes a marked improvement over the \(N^{-2/d} \) order achievable on a single convex partition. The gradient of \(f \) is approximated with the order \(N^{-3/(2d+1)} \). The first algorithm creates \(d \) convex partitions and relies on the knowledge of the eigenvectors of the average Hessians of \(f \) over the cells of an auxiliary uniform partition, whereas the second algorithm with \(\binom{d+1}{2} \) convex partitions is independent of \(f \). In addition, we also give an \(f \)-independent partitioning algorithm for a sum of \(d \) piecewise constants that achieves the approximation order \(N^{-2/(d+1)} \).

1 Introduction

Let \(\Omega = (0, 1)^d \), \(d \geq 2 \). A finite set \(\Delta \) of subdomains \(\omega \) of \(\Omega \) (called cells) is said to be a partition of \(\Omega \) if \(\omega \cap \omega' = \emptyset \) when \(\omega \neq \omega' \), and \(\sum_{\omega \in \Delta} |\omega| = |\Omega| \), where \(|\omega| \) denotes the Lebesgue measure (\(d \)-dimensional volume) of \(\omega \). A partition is convex if each cell \(\omega \) is a convex domain. The cardinality of a finite set \(D \) is denoted \(|D| \), so that \(|\Delta| \) stands for the number of cells \(\omega \) in the partition \(\Delta \).

∗University of Giessen, Department of Mathematics, Arndtstrasse 2, 35392 Giessen, Germany, oleg.davydov@math.uni-giessen.de
†Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, Scotland, UK, fabi.rabarison@strath.ac.uk
Given a partition Δ, the linear space of piecewise polynomials of order k with respect to it is defined by

$$S_k(\Delta) = \left\{ \sum_{\omega \in \Delta} q_\omega \chi_\omega : q_\omega \in \Pi^d_k \right\},$$

where Π^d_k, $k \geq 1$, is the space of polynomials of total degree $< k$ in d variables. The error of the best L_p-approximation of a function $f \in L_p(\Omega)$ from $S_k(\Delta)$,

$$E_k(f, \Delta)_p := \inf_{s \in S_k(\Delta)} \|f - s\|_p, \quad 1 \leq p \leq \infty,$$

can be computed if the errors $E_k(f)_{L_p(\omega)} := \inf_{q \in \Pi^d_k} \|f - q\|_{L_p(\omega)}$ of the best polynomial approximations of f on all $\omega \in \Delta$ are known. Indeed,

$$E_k(f, \Delta)_p = \begin{cases} \left(\sum_{\omega \in \Delta} E_k(f)_{L_p(\omega)} \right)^{1/p} & \text{if } p < \infty, \\ \max_{\omega \in \Delta} E_k(f)_{L_\infty(\omega)} & \text{if } p = \infty. \end{cases} \quad (1)$$

For a system $P = \{ \Delta^{(1)}, \ldots, \Delta^{(n)} \}$ of several overlaying partitions of Ω, we consider the space of sums of piecewise polynomials

$$S_k(P) = \left\{ \sum_{\nu=1}^n \sum_{\omega \in \Delta^{(\nu)}} q_{\nu, \omega} \chi_\omega : q_{\nu, \omega} \in \Pi^d_k \right\}.$$

Thus, a function s in $S_k(P)$ is the sum of n piecewise polynomials $s = \sum_{\nu=1}^n s_\nu$ with $s_\nu \in S_k(\Delta^{(\nu)})$, $\nu = 1, \ldots, n$. We set $|P| := \sum_{\nu=1}^n |\Delta^{(\nu)}|$ and denote the best approximation error from $S_k(P)$ by

$$E_k(f, P)_p := \inf_{s \in S_k(P)} \|f - s\|_p, \quad 1 \leq p \leq \infty.$$

Given a function f, we consider piecewise polynomial approximations of f on suitably designed partitions. Standard uniform type partitions deliver piecewise polynomial approximations with the order

$$E_k(f, \Delta)_p = O(|\Delta|^{-k/d}), \quad |\Delta| \to \infty, \quad (2)$$

if f belongs to the Sobolev space $W^k_p(\Omega)$, as follows from the Bramble-Hilbert lemma, see for example [3].

It is shown in [1, Theorem 2] that the approximation order of piecewise constants $E_1(f, \Delta)_\infty = O(|\Delta|^{-1/d})$ cannot be improved even assuming infinite differentiability of f if the partitions are isotropic. One thus has to use anisotropic partitions if smoothness should pay off in convergence rate.
A simple algorithm suggested in [1, 2] (see Algorithm 1 and Theorem 1 below) delivers an improved approximation order $E_1(f, \Delta)_p = \mathcal{O}(|\Delta|^{-2/(d+1)})$ of piecewise constants on suitable anisotropic convex partitions if $f \in W^2_p(\Omega)$. Here, the unit cube is first subdivided uniformly into m^d subcubes (macro-cells), each of which is then split anisotropically into m slices (micro-cells). (Note that in the case $d = 2$ the order $E_1(f, \Delta)_p = \mathcal{O}(|\Delta|^{-2/3})$ has been obtained earlier in [4] by a different method.) Moreover, [2, Theorem 2] shows that $|\Delta|^{-2/(d+1)}$ is the saturation order of piecewise constant approximation on convex partitions in the sense that it cannot be further improved for any $f \in C^2(\Omega)$ whose Hessian is positive definite at some point. Nevertheless, [2, Theorem 3] suggests that this phenomenon is restricted to piecewise constants, as the saturation order of piecewise linear approximations on convex partitions is $|\Delta|^{-2/d}$, that is the same as on the isotropic partitions.

In this paper we show that for $k = 2$ the approximation order $E_2(f, \Delta)_p = \mathcal{O}(|\Delta|^{-2/d})$ in (2) can be improved to $E_2(f, \mathcal{P})_p = \mathcal{O}(|\mathcal{P}|^{-6/(2d+1)})$ if $f \in W^3_p(\Omega)$ by using a sum of piecewise linear polynomials with respect to a system \mathcal{P} of d convex polyhedral partitions of Ω (Algorithm 3 and Theorem 3). Moreover, the approximation of the gradient of f improves to $\mathcal{O}(|\mathcal{P}|^{-3/(2d+1)})$ from the standard estimate $\mathcal{O}(|\Delta|^{-1/d})$ for piecewise linear polynomials on a single partition.

In addition, we show that the sums of d piecewise constants on suitable fixed, f-independent partitions can be used to obtain the same approximation order $E_1(f, \mathcal{P})_p = \mathcal{O}(|\mathcal{P}|^{-2/(d+1)})$ (Algorithm 2 and Theorem 2), whereas Algorithm 1 relies on the knowledge of the average gradients of f on the macro-cells. Similarly, the sums of $\binom{d+1}{2}$ piecewise linear polynomials on f-independent partitions can be used to obtain the approximation order $E_2(f, \mathcal{P})_p = \mathcal{O}(|\mathcal{P}|^{-6/(2d+1)})$ (Algorithm 4 and Theorem 4), whereas Algorithm 3 employs the average Hessians of f on the macro-cells.

The results presented here are based on Chapter 4 of the thesis of the second named author [5].

The paper is organised as follows. Section 2 is devoted to the piecewise constant approximation, where after recalling the algorithm suggested in [1, 2] we present our new result for the sums of piecewise constants with fixed splitting directions of the macro-cells, whereas in Sections 3 and 4 we describe the two algorithms for the sums of piecewise linear polynomials.

In what follows we will use the following version of the Sobolev seminorm

$$|f|_{W^k_p(\omega)} := \sum_{|\alpha|=n} \left\| \frac{\partial^n f}{\partial x^\alpha} \right\|_{L_p(\omega)}, \quad |\alpha| := \alpha_1 + \cdots + \alpha_d \quad \text{for } \alpha \in \mathbb{Z}_+^d,$$

and recall that if $\omega \subset \mathbb{R}^d$ is a bounded convex domain and $f|_{\omega} \in W^k_p(\omega)$, then
there exists a polynomial \(q \in \Pi_k^d \) such that [3]
\[
|f - q|_{W^r_p(\omega)} \leq \rho_{d,k} \diam^{k-r}(\omega)|f|_{W^k_p(\omega)}, \quad r = 0, \ldots, k,
\] (3)
where \(\rho_{d,k} \) denotes a positive constant depending only on \(d \) and \(k \) [3]. In view of Lemma 1, (3) implies in particular the Poincaré inequality
\[
\|f - f_\omega\|_{L_p(\omega)} \leq \rho_d \diam(\omega)\|\nabla f\|_{L_p(\omega)}, \quad f \in W^1_p(\omega),
\] (4)
with a constant \(\rho_d \) depending only on \(d \), where \(f_\omega := |\omega|^{-1} \int_\omega f(x) \, dx \) and
\[
\|\nabla f\|_{L_p(\omega)} := \left(\sum_{k=1}^d |D_{x_k} f|^2 \right)^{1/2}, \quad D_{x_k} f := \frac{\partial f}{\partial x_k}.
\]
Note that \(\|f_\omega - c\|_{L_p(\omega)} \leq \|f - c\|_{L_p(\omega)} \) for any constant \(c \), and hence \(\|f - f_\omega\|_{L_p(\omega)} \leq 2E_1(f)_{L_p(\omega)} \). We prefer to use (4) rather than (3) when \(k = 1 \) because explicit values or estimates of the optimal constant in (4) are known for \(p = 1, 2, \infty \), see a discussion and references in [1, Section 2].

Lemma 1. For any \(1 \leq p \leq \infty \),
\[
\|\nabla f\|_{L_p(\omega)} \leq |f|_{W^1_p(\omega)} \leq d^{\max\left\{ \frac{1}{2}, 1 - \frac{1}{p} \right\}} \|\nabla f\|_{L_p(\omega)}. \tag{5}
\]

Proof. By the inequality between discrete 2- and 1-norms, and triangle inequality, we have
\[
\|\nabla f\|_{L_p(\omega)} \leq \left(\int_\omega \left(\sum_{k=1}^d |D_{x_k} f(x)|^p \right)^{1/p} \, dx \right)^{1/p} \leq \sum_{k=1}^d \left(\int_\omega |D_{x_k} f(x)|^p \, dx \right)^{1/p},
\]
which shows the first inequality in (5). The second one is obtained as follows. By the inequality between arithmetic and \(p \)-power means,
\[
|f|_{W^1_p(\omega)} \leq d^{1 - \frac{1}{p}} \left(\sum_{k=1}^d \int_\omega |D_{x_k} f(x)|^p \, dx \right)^{1/p},
\]
which completes the proof if \(p = 2 \). If \(p > 2 \), then \(|f|_{W^1_p(\omega)} \leq d^{1 - \frac{1}{p}} \|\nabla f\|_{L_p(\omega)} \) follows by the inequality between \(p \)- and 2-norms. If \(p < 2 \), then the inequality between \(p \)- and 2-means leads to \(|f|_{W^1_p(\omega)} \leq d^2 \|\nabla f\|_{L_p(\omega)} \). \(\square \)
2 Sums of piecewise constants

The following algorithm for piecewise constant approximation with optimal approximation order $|\Delta|^{-2/(d+1)}$ on convex polyhedral partitions has been suggested in [1, 2].

Algorithm 1 ([2]). Assume $f \in W^1_p(\Omega), \Omega = (0,1)^d$. Split Ω into $N_1 = m^d$ cubes $\omega_1, \ldots, \omega_{N_1}$ of edge length $1/m$, with $m \in \mathbb{Z}_+$. Then split each ω_i into N_2 slices ω_{ij}, $j = 1, \ldots, N_2$, by equidistant hyperplanes orthogonal to the average gradient $g_i := |\omega_i|^{-1} \int_{\omega_i} \nabla f(x) \, dx$ on ω_i. Set $\Delta = \{ \omega_{ij} : i = 1, \ldots, N_1, j = 1, \ldots, N_2 \}$. Clearly, $|\Delta| = N_1 N_2$ and each ω_{ij} is a convex polyhedron with at most $2(d+1)$ facets.

Theorem 1 ([2]). Assume that $f \in W^2_p(\Omega), \Omega = (0,1)^d$, for some $1 \leq p \leq \infty$. For any $m = 1, 2, \ldots$, generate the partition Δ_m by using Algorithm 1 with $N_1 = m^d$ and $N_2 = m$. Then

$$E_1(f, \Delta_m)_p \leq C |\Delta_m|^{-2/(d+1)} (|f|_{W^1_p(\Omega)} + |f|_{W^2_p(\Omega)}),$$

(6)

where C is a constant depending only on d.

The new algorithm will involve a system of d convex polyhedral partitions independent of f.

Algorithm 2. Split $\Omega = (0,1)^d$ into $N_1 = m^d$, $m \in \mathbb{Z}_+$, cubes $\omega_1, \ldots, \omega_{N_1}$ of edge length $1/m$, whose edges are parallel to the coordinate axes. For each $\nu = 1, \ldots, d$, define $\Delta^{(\nu)}$ by splitting each ω_i into N_2 slices $\omega_{ij}^{(\nu)}$, $j = 1, \ldots, N_2$, by equidistant hyperplanes orthogonal to the x_ν-axis. Set $\mathcal{P} = \{ \Delta^{(1)}, \ldots, \Delta^{(d)} \}$. Then $|\Delta^{(\nu)}| = N_1 N_2$ for all $\nu = 1, \ldots, d$ and $|\mathcal{P}| = d N_1 N_2$.

Partitions $\Delta^{(1)}, \Delta^{(2)}$ in the case $d = 2$ and $N_2 = m = 4$ are illustrated in Fig. 1. Note that each $\omega_{ij}^{(\nu)}$ is a d-dimensional box with its ν-th dimension $\frac{1}{m N_2}$ and all other dimensions $\frac{1}{m}$.

Theorem 2. Assume that $f \in W^2_p(\Omega), \Omega = (0,1)^d$, for some $1 \leq p \leq \infty$. For any $m = 1, 2, \ldots$, generate the system of partitions \mathcal{P}_m by using Algorithm 2 with $N_1 = m^d$ and $N_2 = m$. Then

$$E_1(f, \mathcal{P}_m)_p \leq C |\mathcal{P}_m|^{-2/(d+1)} (|f|_{W^1_p(\Omega)} + |f|_{W^2_p(\Omega)}),$$

(7)

where C is a constant depending only on d.

Figure 1: Partitions $\Delta^{(1)}, \Delta^{(2)}$ for piecewise constant approximation ($d = 2$, $N_2 = m = 4$).

Proof. For the sake of brevity we assume that $p < \infty$. The proof for $p = \infty$ is the same except that at the appropriate places integrals have to be replaced by the L_∞-norm.

We first introduce an auxiliary piecewise linear approximation of f. For each $i = 1, \ldots, N_1$, let

$$\ell_i = c_i + \sum_{\nu=1}^{d} \ell_{i,\nu},$$

where

$$c_i = |\omega_i|^{-1} \int_{\omega_i} f(x) \, dx, \quad \ell_{i,\nu}(x) = a_{i,\nu}(x_{\nu} - x_{i,\nu}),$$

with

$$a_{i,\nu} := |\omega_i|^{-1} \int_{\omega_i} D_{x_{\nu}} f(x) \, dx, \quad \nu = 1, \ldots, d,$$

and $(x_{i,1}, \ldots, x_{i,d})$ denotes the barycenter of ω_i. We set

$$\ell := \sum_{i=1}^{N_1} \ell_i \chi_{\omega_i}.$$

Since

$$\int_{\omega_i} \ell_{i,\nu}(x) \, dx = 0, \quad \nu = 1, \ldots, d,$$

and diam$(\omega_i) \leq \frac{\sqrt{d}}{m}$, we deduce by the Poincaré inequality and (5),

$$\left\| \left(f - \sum_{\nu=1}^{d} \ell_{i,\nu} \right) - c_i \right\|_{L_p(\omega_i)} \leq \rho_d \text{diam}(\omega_i) \left\| \nabla f - \sum_{\nu=1}^{d} \nabla \ell_{i,\nu} \right\|_{L_p(\omega_i)}$$

$$\leq \frac{\sqrt{d} \rho_d}{m} \sum_{\nu=1}^{d} \| D_{x_{\nu}} f - a_{i,\nu} \|_{L_p(\omega_i)}.$$
The Poincaré inequality and (5) also imply
\[
\|D_{x^\nu} f - a_{i,\nu}\|_{L^p(\omega_i)} \leq \rho_d \text{diam}(\omega_i) \|\nabla (D_{x^\nu} f)\|_{L^p(\omega_i)}
\]
\[
\leq \frac{d \rho_d}{m} \sum_{\mu=1}^d \|D_{x^\mu} f\|_{L^p(\omega_i)},
\]
where we set \(D_{x^\mu} f := D_{x^\mu} D_{x^\nu} f\). It follows that
\[
\|f - \ell_i\|_{L^p(\omega_i)} \leq \frac{d \rho_d^2}{m^2} \sum_{\nu,\mu=1}^d \|D_{x^\mu} f\|_{L^p(\omega_i)} = \frac{2d \rho_d^2}{m^2} |f|_{W^2_2(\omega_i)}.
\]

Hence,
\[
\|f - \ell\|_p = \left(\sum_{i=1}^{N_1} \|f - \ell_i\|^p_{L^p(\omega_i)}\right)^{\frac{1}{p}} \leq \frac{2d \rho_d^2}{m^2} |f|_{W^2_2(\omega)}.
\] (8)

For each \(i, \nu\), let \([x_j^0, x_j^1]\) be the projection of the \(\nu\)-th edge of \(\omega_{ij}^{(\nu)}\) on the \(x^\nu\)-axis, \(j = 1, \ldots, N_2\). We now replace \(\ell_{i,\nu}\) by the piecewise constant function
\[
s_{i,\nu} = \sum_{j=1}^{N_2} b_j a_{i,\nu} \chi_{\omega_{ij}^{(\nu)}},
\]
where \(b_j = x_j^0 - x_{i,\nu}\), \(j = 1, \ldots, N_2\). Since \(x_j^1 - x_j^0 = \frac{1}{mN_2}\), we obtain
\[
\|\ell_{i,\nu} - s_{i,\nu}\|_{L^p(\omega_i)}^p = \sum_{j=1}^{N_2} \int_{\omega_{ij}^{(\nu)}} |a_{i,\nu}(x_{\nu} - x_{i,\nu} - b_j)|^p \, dx
\]
\[
= \frac{|a_{i,\nu}|^p}{m^{d-1}} \sum_{j=1}^{N_2} \int_0^{\frac{mN_2}{jN_2}} u^p \, du = \left(\frac{1}{mN_2}\right)^p \frac{|a_{i,\nu}|^p}{m^d(p + 1)}.
\]

Observe that
\[
\frac{|a_{i,\nu}|^p}{m^d} = |\omega_i| \frac{1}{|\omega_i|} \int_{\omega_i} |D_{x^\nu} f(x)|^p \, dx \leq \int_{\omega_i} |D_{x^\nu} f(x)|^p \, dx.
\]

By setting
\[
s = \sum_{i=1}^{N_1} \left(c_i + \sum_{\nu=1}^d s_{i,\nu}\right) \chi_{\omega_i},
\]
we obtain a function \(s \in S_1(P_m) \) satisfying
\[
\| \ell - s \|_p = \left(\sum_{i=1}^{N_1} \left(\sum_{\nu=1}^{d} (\ell_{i,\nu} - s_{i,\nu}) \right)^p \right)^{\frac{1}{p}} \\
\leq \left(\sum_{i=1}^{N_1} \left(\sum_{\nu=1}^{d} \| \ell_{i,\nu} - s_{i,\nu} \|_{L_p(\omega_i)} \right)^p \right)^{\frac{1}{p}} \\
\leq \sum_{\nu=1}^{d} \left(\sum_{i=1}^{N_1} \| \ell_{i,\nu} - s_{i,\nu} \|_{L_p(\omega_i)} \right)^{\frac{1}{p}},
\]
by the triangle inequalities for both integral and discrete \(p \)-norm. In view of the estimates given above,
\[
\| \ell - s \|_p \leq \frac{(p + 1)^{-1/p}}{mN_2} \sum_{\nu=1}^{d} \left(\sum_{i=1}^{N_1} \left(\frac{|a_{i,\nu}|^p}{m^d} \right)^{\frac{1}{p}} \right) \\
\leq \frac{1}{mN_2} \sum_{\nu=1}^{d} \left(\sum_{i=1}^{N_1} \int_{\omega_i} |D_{x,\nu} f(x)|^p \, dx \right)^{\frac{1}{p}} \\
= \frac{1}{mN_2^2} \max_{\omega} |f|_{W^{1,p}(\Omega)}. \tag{9}
\]
Since \(N_2 = m \) and \(m^{-2} = \left(\frac{\|P_m\|}{d} \right)^d \), the bound \((7) \) with constant \(C = d^{d}^{\frac{d}{d+1}} \max \{2d\rho_d^2, 1\} \) is obtained by combining \(\text{(8)} \) and \(\text{(9)} \).

\section{Sums of piecewise linear polynomials}

In this section we approximate the function by using a sum of piecewise linear polynomials over several overlaying partitions of \(\Omega \).

Algorithm 3. Assume \(f \in W^{2,1}_1(\Omega), \Omega = (0,1)^d \). Split \(\Omega \) into \(N_1 = m^d \), \(m \in \mathbb{Z}_+ \), subcubes \(\omega_1, \ldots, \omega_{N_1} \) of edge length \(1/m \), whose edges are parallel to the coordinate axes. For each \(i = 1, \ldots, N_1 \), let \(H_i \) be the average Hessian matrix of \(f \) over \(\omega_i \),
\[
H_i = \left[\frac{1}{2|\omega_i|} \int_{\omega_i} D_{x,\nu\mu} f(x) \, dx \right]_{\nu,\mu=1,\ldots,d},
\]
and let \(\sigma_{i,\nu}, \nu = 1, \ldots, d \), be unit eigenvectors of \(H_i \). For each \(\nu = 1, \ldots, d \), define \(\Delta^{(\nu)} \) by splitting each \(\omega_i \) into \(N_2 \) slices \(\omega_{ij}^{(\nu)} \), \(j = 1, \ldots, N_2 \), by equidistant hyperplanes orthogonal to the eigenvector \(\sigma_{i,\nu} \). Set \(\mathcal{P} = \{ \Delta^{(1)}, \ldots, \Delta^{(d)} \} \).
Then \(|\Delta^{(\nu)}| = N_1N_2 \) for each \(\nu = 1, \ldots, d \) and \(|\mathcal{P}| = dN_1N_2 \).
Partitions $\Delta^{(1)}$, $\Delta^{(2)}$ of Algorithm 3 in the case $d = 2$ and $N_2 = m = 4$ are illustrated in Figure 2. The splitting directions on each subcube ω_i are orthogonal to one of the eigenvectors of the average Hessian H_i.

Theorem 3. Let $f \in W^3_p(\Omega)$, $\Omega = (0,1)^d$, for some $1 \leq p \leq \infty$. For any $m = 1, 2, \ldots$, generate the system of partitions P_m by using Algorithm 3 with $N_1 = m^d$ and $N_2 = \lceil m^{\frac{d}{2}} \rceil$. Then there exists a sum of piecewise linear functions $s_m \in S_2(P_m)$ such that

$$E_2(f, P_m) \leq \|f - s_m\|_p \leq C_1|P_m|^{-6/(2d+1)}(|f|_{W^3_p(\Omega)} + |f|_{H^3_p(\Omega)}),$$

$$|f - s_m|_{W^1_p(\Omega)} \leq C_2|P_m|^{-3/(2d+1)}(|f|_{W^3_p(\Omega)} + |f|_{H^3_p(\Omega)}),$$

where C_1, C_2 are constants depending only on d.

Proof. As in the proof of Theorem 2 we assume that $p < \infty$. The modifications needed in the case $p = \infty$ are obvious. Denote by Δ the partition of Ω into N_1 cubes $\omega_1, \ldots, \omega_{N_1}$ of edge length $1/m$. It follows from (3) that for each $i = 1, \ldots, N_1$ there exists a quadratic polynomial q_i such that

$$\|f - q_i\|_{L^p(\omega_i)} \leq \rho_{d,3} \text{diam}^3(\omega_i) |f|_{W^3_p(\omega_i)} \leq \frac{d^2 \rho_{d,3}}{m^3} |f|_{W^3_p(\omega_i)},$$

$$|f - q_i|_{W^1_p(\omega_i)} \leq \rho_{d,3} \text{diam}^2(\omega_i) |f|_{W^3_p(\omega_i)} \leq \frac{d \rho_{d,3}}{m^2} |f|_{W^3_p(\omega_i)},$$

$$|f - q_i|_{W^2_p(\omega_i)} \leq \rho_{d,3} \text{diam}(\omega_i) |f|_{W^3_p(\omega_i)} \leq \frac{d \rho_{d,3}}{m} |f|_{W^3_p(\omega_i)}.$$

Figure 2: Partitions $\Delta^{(1)}$ (left) and $\Delta^{(2)}$ (right) obtained from Algorithm 3 ($d = 2$ and $N_2 = m = 4$).
We deduce from (12) that

$$\| f - \sum_{i=1}^{N_1} q_i \chi_{\omega_i} \|_p \leq \frac{d^2 \rho_{d,3}}{m^3} \| f \|_{W^3_p(\Omega)}. \quad (15)$$

Let $\tilde{q}_i(x) = x^T H_i x$ be the homogeneous quadratic polynomial whose Hessian matrix coincides with the average Hessian matrix H_i of f over ω_i, that is,

$$D_{x^T x^\mu} \tilde{q}_i = |\omega_i|^{-1} \int_{\omega_i} D_{x^T x^\mu} f(x) \, dx, \quad \nu, \mu = 1, \ldots, d.$$

We can establish a relation between q_i and \tilde{q}_i as follows. By using the Poincaré inequality (4), together with (14), we obtain

$$\| D_{x^T x^\mu} (\tilde{q}_i - q_i) \|_{L^p(\omega_i)} \leq \| D_{x^T x^\mu} (\tilde{q}_i - f) \|_{L^p(\omega_i)} + \| D_{x^T x^\mu} (f - q_i) \|_{L^p(\omega_i)}$$

$$\leq \rho_d \text{diam}(\omega_i) \| \nabla (D_{x^T x^\mu} f) \|_{L^p(\omega_i)} + \rho_{d,3} \text{diam}(\omega_i) \| f \|_{W^3_p(\omega_i)}. \quad (16)$$

Let $i \in \{1, \ldots, N_1\}$ be fixed, and let $(x_{0,1}, \ldots, x_{0,d})$ denote the barycenter of ω_i. Consider the linear polynomial $\tilde{\ell}_i$ defined by

$$\tilde{\ell}_i = \tilde{c}_i + \sum_{\nu=1}^d \tilde{\ell}_{i,\nu}, \quad \tilde{\ell}_{i,\nu} := \tilde{a}_{i,\nu} (x_{\nu} - x_{0,\nu}), \quad (17)$$

where

$$\tilde{a}_{i,\nu} = |\omega_i|^{-1} \int_{\omega_i} D_{x^\nu} (f - \tilde{q}_i)(x) \, dx, \quad \tilde{c}_i = |\omega_i|^{-1} \int_{\omega_i} (f - \tilde{q}_i)(x) \, dx. \quad (18)$$

Observe that $\int_{\omega_i} \tilde{\ell}_{i,\nu}(x) \, dx = 0$ for all $\nu = 1, \ldots, d$. Hence, by using (4), we obtain

$$\| f - \tilde{q}_i - \tilde{\ell}_i \|_{L^p(\omega_i)} = \| (f - \tilde{q}_i - \sum_{\nu=1}^d \tilde{\ell}_{i,\nu}) - \tilde{c}_i \|_{L^p(\omega_i)}$$

$$\leq \rho_d \text{diam}(\omega_i) \| \nabla (f - \tilde{q}_i - \sum_{\nu=1}^d \tilde{\ell}_{i,\nu}) \|_{L^p(\omega_i)}$$

$$\leq \rho_d \text{diam}(\omega_i) \| f - \tilde{q}_i - \sum_{\nu=1}^d \tilde{\ell}_{i,\nu} \|_{W^3_p(\omega_i)}. \quad (19)$$
We shall estimate the seminorm in the above inequality. To this end, observe that for each $\nu = 1, \ldots, d$, the Poincaré inequality and (18) yield

$$
\|D_{x,\nu} (f - \tilde{q}_i) - \sum_{\mu=1}^d \tilde{\ell}_{i,\mu} \|_{L_p(\omega_i)} = \|D_{x,\nu} (f - \tilde{q}_i) \|_{L_p(\omega_i)}
\leq \rho_d \text{diam}(\omega_i) \|\nabla (D_{x,\nu} (f - \tilde{q}_i))\|_{L_p(\omega_i)}
\leq \rho_d \text{diam}(\omega_i) |D_{x,\nu} (f - \tilde{q}_i)|_{W^1_p(\omega_i)}.
$$

(20)

Now, for each $\mu = 1, \ldots, d$, by virtue of the definition of \tilde{q}_i, the Poincaré inequality implies that

$$
\|D_{x,\mu x,\nu} (f - \tilde{q}_i) \|_{L_p(\omega_i)} \leq \rho_d \text{diam}(\omega_i) \|\nabla (D_{x,\mu x,\nu} f)\|_{L_p(\omega_i)}.
$$

(21)

Combining (19), (20) and (21) we obtain

$$
\|f - \tilde{q}_i - \tilde{\ell}_i\|_{L_p(\omega_i)} \leq \rho_d^3 \text{diam}(\omega_i)^3 |f|_{W^3_p(\omega_i)}.
$$

(22)

Using the above estimation, together with (12), yields

$$
\|q_i - \tilde{q}_i - \tilde{\ell}_i\|_{L_p(\omega_i)} \leq \|q_i - f\|_{L_p(\omega_i)} + \|f - \tilde{q}_i - \tilde{\ell}_i\|_{L_p(\omega_i)}
\leq d^2 \frac{(\rho_{d,3} + \rho_d^3)}{m^3} |f|_{W^3_p(\omega_i)}.
$$

(23)

Since c_i is a constant, we have

$$
|f - \tilde{q}_i - \tilde{\ell}_i|_{W^3_p(\omega_i)} = |f - \tilde{q}_i - \sum_{\nu=1}^d \tilde{\ell}_{i,\nu}|_{W^3_p(\omega_i)} \leq \rho_d^2 \text{diam}(\omega_i)^2 |f|_{W^3_p(\omega_i)},
$$

by virtue of (20) and (21). Combining this with (13) implies

$$
|q_i - \tilde{q}_i - \tilde{\ell}_i|_{W^3_p(\omega_i)} \leq |q_i - f|_{W^3_p(\omega_i)} + |f - \tilde{q}_i - \tilde{\ell}_i|_{W^3_p(\omega_i)}
\leq d \frac{(\rho_{d,3} + \rho_d^3)}{m^3} |f|_{W^3_p(\omega_i)}.
$$

(24)

For each $i = 1, \ldots, N_1$, the Hessian matrix H_i can be diagonalized into $H_i = U_i^T D_i U_i$ where U_i is an orthogonal matrix

$$
U_i = [\sigma_{i,1} \cdots \sigma_{i,d}]^T,
$$

and D_i is a diagonal matrix whose entries $\lambda_{i,1}, \ldots, \lambda_{i,d}$ are the eigenvalues of H_i. Then

$$
\tilde{q}_i = \lambda_{i,1} \ell_1^2 + \cdots + \lambda_{i,d} \ell_d^2,
$$

11
where
\[\ell_{\nu}(x) := \sigma_{i,\nu}^T x, \quad \nu = 1, \ldots, d, \]
are linear polynomials. We have
\[
|\lambda_{i,\nu}| \leq \|H_i\|_{\infty} = \frac{1}{2|\omega_i|} \max_{1 \leq \gamma \leq d} \sum_{\mu=1}^{d} \int_{\omega_i} \left| D_{\gamma,\nu} f(x) \right| dx \leq \frac{1}{2} |\omega_i|^{-1/p} \|f\|_{W_2^p(\omega_i)}. \]

Since \(|\omega_i| = m^{-d}\), it follows that
\[
|\lambda_{i,\nu}| \leq \frac{m^{d/p}}{2} |f|_{W_2^p(\omega_i)}, \quad \nu = 1, \ldots, d. \quad (25)
\]

Given \(i, \nu\) and \(j\), the set \(\omega_{ij}^{(\nu)}\) is contained between two hyperplanes \(\ell_{\nu}(x) = c_j\) and \(\ell_{\nu}(x) = c_j + w_{i,\nu} \frac{mN_2}{mN_2}\), where \(w_{i,\nu}\) denotes the width of the unit cube in the direction \(\sigma_{i,\nu}\). Clearly, \(1 \leq w_{i,\nu} \leq \sqrt{d}\). We set
\[
\bar{s}_{i,\nu} := \sum_{j=1}^{N_2} \lambda_{i,\nu} c_j (2\ell_{\nu} - c_j) \chi_{\omega_{ij}^{(\nu)}},
\]
\[
\bar{s}_i := \ell_i + \sum_{\nu=1}^{d} \bar{s}_{i,\nu}.
\]

Then by using the orthogonal change of variables \(y = \phi_U(x) := U_i x\) we obtain in view of (25),
\[
\|\lambda_{i,\nu} \ell_{\nu}^2 - \bar{s}_{i,\nu}\|_{L_p(\omega_{ij}^{(\nu)})}^p = \int_{\omega_{ij}^{(\nu)}} |\lambda_{i,\nu} (\ell_{\nu}(x) - c_j)^2|^p dx = \int_{\phi_U(\omega_{ij}^{(\nu)})} |\lambda_{i,\nu} (y_{\nu} - c_j)^2|^p dy
\]
\[
\leq \left(\frac{\sqrt{d}}{m} \right)^{d-1} \int_{c_j}^{c_j + w_{i,\nu} \frac{mN_2}{mN_2}} |\lambda_{i,\nu} (y_{\nu} - c_j)^2|^p dy_{\nu}
\]
\[
\leq \frac{d^{d/2}}{(2p + 1)m^d N_2} \left(\frac{d |\lambda_{i,\nu}|}{m^2 N_2^2} \right)^p
\]
\[
\leq \frac{d^{d/2}}{(2p + 1)N_2} \left(\frac{d}{2m^2 N_2^2} \right)^p |f|_{W_2^p(\omega_i)}^p, \quad (26)
\]

which implies
\[
|\lambda_{i,\nu} \ell_{\nu}^2 - \bar{s}_{i,\nu}|_{L_p(\omega_i)}^p \leq \sum_{j=1}^{N_2} |\lambda_{i,\nu} \ell_{\nu}^2 - \bar{s}_{i,\nu}|_{L_p(\omega_{ij}^{(\nu)})}^p \leq \frac{d^{d/2}}{2p + 1} \left(\frac{d}{2m^2 N_2^2} \right)^p |f|_{W_2^p(\omega_i)}^p.
\]
Hence
\[
\|\tilde{q}_i + \tilde{\ell}_i - \bar{s}_i\|_{L^p(\omega_i)} = \left\| \sum_{\nu=1}^{d} (\lambda_{i,\nu} \ell^2_{\nu} - \bar{s}_{i,\nu}) \right\|_{L^p(\omega_i)} \leq \left(\frac{d^{d/2}}{2p+1} \right)^{\frac{1}{p}} \frac{d^2}{2m^2 N_2^2} |f|_{W^2_p(\omega)} ,
\]
from which it immediately follows that
\[
\| \sum_{i=1}^{N_1} (\tilde{q}_i + \tilde{\ell}_i - \bar{s}_i) \chi_{\omega_i} \|_p = \left(\sum_{i=1}^{N_1} \|\tilde{q}_i + \tilde{\ell}_i - \bar{s}_i\|_{L^p(\omega_i)}^p \right)^{\frac{1}{p}} \leq \left(\frac{d^{d/2}}{2p+1} \right)^{\frac{1}{p}} \frac{d^2}{2m^2 N_2^2} |f|_{W^2_p(\omega)} .
\]
Consider
\[
s = \sum_{i=1}^{N_1} \bar{s}_i \chi_{\omega_i} .
\]
Then \(s \in S_2(P_m) \). Since \(m^{-3} \leq (mN_2)^{-2} \leq \left(\frac{|P_m|}{d} \right)^{-6/(2d+1)} \), we now combine (15) with (23) and (27) to deduce that
\[
\|f - s\|_p \leq \|f - \sum_{i=1}^{N_1} q_i \chi_{\omega_i}\|_p + \| \sum_{i=1}^{N_1} (q_i - \tilde{q}_i - \tilde{\ell}_i) \chi_{\omega_i}\|_p + \| \sum_{i=1}^{N_1} (\tilde{q}_i + \tilde{\ell}_i - \bar{s}_i) \chi_{\omega_i}\|_p \\
\leq C_1 |P_m|^{-6/(2d+1)} (|f|_{W^3_p(\alpha)} + |f|_{W^2_p(\alpha)}) ,
\]
where \(C_1 = d^{6/2+1} \left(d^2 (2 \rho_{d,3} + \rho_{d}^2) + \left(\frac{d^{d/2}}{2p+1} \right)^{\frac{1}{p}} \frac{d^2}{2} \right) \), and thereby proving (10).

For each \(i = 1, \ldots, N_1 \) we observe that
\[
|f - \bar{s}_i|_{W^2_p(\omega_i)} \leq 3^{1-\frac{n}{p}} \left(\sum_{\nu=1}^{d} \int_{\omega_i} \left(|D_{x^\mu} (f - q_i)(x)|^p \right. \right. \\
+ |D_{x^\mu} (q_i - \tilde{q}_i - \tilde{\ell}_i)(x)|^p + \left. \left. |D_{x^\mu} (\bar{s}_i)(x)|^p \right) dx \right)^{\frac{1}{p}} .
\]
For any \(\mu, \nu = 1, \ldots, d \), denoting by \(\sigma_{i,\nu}[\mu] \) the \(\mu \)-th coordinate of the eigenvector \(\sigma_{i,\nu} \), with \(|\sigma_{i,\nu}[\mu]| \leq 1 \), we again use the orthogonal change of variables
\[y = \phi_{U_i}(x) \] and (25) to show that
\[\|D_{x^\mu}(\lambda_{i,\nu} \ell^2_{\nu} - \bar{s}_{i,\nu})\|_{L^p(\omega_{ij}^{(\nu)})}^p = \int_{\omega_{ij}^{(\nu)}} 2|\lambda_{i,\nu} \sigma_{i,\nu}[\mu](\ell_{\nu}(x) - c_j)|^p \, dx \]
\[\leq 2^p \int_{\phi_{U_i}(\omega_{ij}^{(\nu)})} |\lambda_{i,\nu}(y_{\nu} - c_j)|^p \, dy \]
\[\leq 2^p \left(\frac{\sqrt{d}}{m} \right)^{d-1} \int_{c_j}^{c_j + \frac{w_{ij}}{mN_2}} |\lambda_{i,\nu}(y_{\nu} - c_j)|^p \, dy_{\nu} \]
\[\leq \frac{2^p d^{d/2}}{(p + 1)m^d N_2} \left(\frac{\sqrt{d}|\lambda_{i,\nu}|}{mN_2} \right)^p \]
\[\leq \frac{d^{d/2}}{(p + 1)N_2} \left(\frac{\sqrt{d}}{mN_2} \right)^p |f|_{W^2_p(\omega_i)}^p, \quad (29) \]
which implies
\[\|D_{x^\mu}(\lambda_{i,\nu} \ell^2_{\nu} - \bar{s}_{i,\nu})\|_{L^p(\omega_i)}^p = \sum_{j=1}^{N_2} \|D_{x^\mu}(\lambda_{i,\nu} \ell^2_{\nu} - \bar{s}_{i,\nu})\|_{L^p(\omega_{ij}^{(\nu)})}^p \]
\[\leq \frac{d^{d/2}}{p + 1} \left(\frac{\sqrt{d}}{mN_2} \right)^p |f|_{W^2_p(\omega_i)}^p. \]
Hence, for each \(\mu = 1, \ldots, d \), we have
\[\|D_{x^\mu}(\bar{q}_i + \bar{\ell}_i - \bar{s}_i)\|_{L^p(\omega_i)}^p = \left\| \sum_{\nu=1}^{d} D_{x^\mu}(\lambda_{i,\nu} \ell^2_{\nu} - \bar{s}_{i,\nu}) \right\|_{L^p(\omega_i)}^p \]
\[\leq \frac{d^{d/2}}{p + 1} \left(\frac{\sqrt{d}}{mN_2} \right)^p |f|_{W^2_p(\omega_i)}^p. \quad (30) \]
Combining (13), (24) and (30) shows that
\[|f - \bar{s}|_{W^2_p(\omega_i)}^p \leq 3^{p-1} \left(\left(\frac{d\rho_{d,3}}{m^2} \right)^p |f|_{W^3_p(\omega_i)}^p + d^p (\rho_{d,3} + \rho_d^2)^p |f|_{W^3_p(\omega_i)}^p \right) + \frac{d^{d/2}}{p + 1} \left(\frac{d^{5/2}}{mN_2} \right)^p |f|_{W^2_p(\omega_i)}^p, \]
where, since \(m^{-2} \leq (mN_2)^{-1} \leq \left(\frac{|P_m|}{d} \right)^{-3/(2d+1)} \),
\[|f - s|_{W^1_p(\Omega)} \leq C_2 |P_m|^{-3/(2d+1)} \left(|f|_{W^3_p(\Omega)} + |f|_{W^2_p(\Omega)} \right), \]
with \(C_2 = 3d^{d/2+1} (d\rho_{d,3} + d(\rho_{d,3} + \rho_d^2) + \frac{d^{d/2}}{p+1}) \), and (11) is proved. \(\square \)
4 Sums of piecewise linear polynomials with fixed directions

In the previous section, the splitting directions in Algorithm 3 depend on the eigenvectors of the average Hessian matrices of f. In this section, we present another method where the splitting directions are independent of the function.

Lemma 2. Any homogeneous quadratic polynomial q can be represented as a linear combination of $\binom{d+1}{2}$ quadratic ridge functions

$$q = \sum_{\nu=1}^{d} a_{\nu} x_{\nu}^2 + \sum_{\nu=1}^{d-1} \sum_{\mu=\nu+1}^{d} b_{\nu\mu} (x_{\nu} + x_{\mu})^2,$$

where

$$a_{\nu} = \frac{1}{2} D_{x_{\nu}x_{\nu}} q - \frac{1}{2} \sum_{\mu \neq \nu} D_{x_{\nu}x_{\mu}} q, \quad b_{\nu\mu} = \frac{1}{2} D_{x_{\nu}x_{\mu}} q. \quad (32)$$

Proof. To prove the first statement we just need to find this representation for all quadratic monomials. For $q = x_{\nu}^2$, we simply take $a_{\nu} = 1$ and set all other coefficients to zero. Moreover, $2x_{\nu}x_{\mu} = (x_{\nu} + x_{\mu})^2 - x_{\nu}^2 - x_{\mu}^2$, so that for $q = x_{\nu}x_{\mu}$ with $\nu \neq \mu$ we can use $b_{\nu\mu} = \frac{1}{2}$, $a_{\nu} = a_{\mu} = -\frac{1}{2}$. The formulas (32) follow by a simple computation. \[\square\]

In the algorithm below, in contrast to Algorithm 3, the splitting directions of the macro-cells ω_i are independent of f.

Algorithm 4. Split $\Omega = (0,1)^d$ into $N_1 = m^d$, $m \in \mathbb{Z}_+$, cubes $\omega_1, \ldots, \omega_{N_1}$ of edge length $1/m$, whose edges are parallel to coordinate axes. For each $\nu = 1, \ldots, d$, define $\Delta^{(\nu)}$ by splitting each ω_i into N_2 slices $\omega^{(\nu)}_{ij}$, $j = 1, \ldots, N_2$, by equidistant hyperplanes orthogonal to the x_{ν}-axis. For each pair $\{\nu, \mu\} \subseteq \{1, \ldots, d\}$, $\nu \neq \mu$, define $\Delta^{(\nu,\mu)}$ by splitting each ω_i into N_2 slices $\omega^{(\nu,\mu)}_{ij}$, $j = 1, \ldots, N_2$, by equidistant hyperplanes parallel to the subspace defined by $x_{\nu} + x_{\mu} = 0$. Set $\mathcal{P} = \{\Delta^{(1)}, \ldots, \Delta^{(d)}, \Delta^{(1,2)}, \ldots, \Delta^{(1,d)}, \ldots, \Delta^{(d-1,d)}\}$. Then $|\Delta^{(\nu)}| = |\Delta^{(\nu,\mu)}| = N_1 N_2$ for all $\nu, \mu = 1, \ldots, d$ and $|\mathcal{P}| = \binom{d+1}{2} N_1 N_2$.

Partitions $\Delta^{(1)}, \Delta^{(2)}$ and $\Delta^{(1,2)}$ in the case $d = 2$ and $N_2 = m = 4$ are illustrated in Figure 3.
Theorem 4. Let \(f \in W^3_p(\Omega) \), \(\Omega = (0,1)^d \), for some \(1 \leq p \leq \infty \). For any \(m = 1,2, \ldots \), generate the system of partitions \(P_m \) by using Algorithm 4 with \(N_1 = m^d \) and \(N_2 = \lceil m^\frac{d}{3} \rceil \). Then there exists a sum of piecewise linear functions \(s_m \in S_2(P_m) \) such that

\[
E_2(f, P_m) \leq \| f - s_m \|_p \leq C_1|P_m|^{-6/(2d+1)}(|f|_W^3_p(\Omega) + |f|_W^3_p(\Omega)),
\]

\[
|f - s_m|_{W^1_p(\Omega)} \leq C_2|P_m|^{-3/(2d+1)}(|f|_W^3_p(\Omega) + |f|_W^3_p(\Omega)),
\]

where \(C_1, C_2 \) are constants depending only on \(d \).

Proof. As before we only consider the somewhat more difficult case when \(p < \infty \) and leave the modifications needed for \(p = \infty \) to the reader. Denote by \(\Delta_m \) the partition of \(\Omega \) into \(N_1 \) cubes \(\omega_1, \ldots, \omega_{N_1} \) of edge length \(1/m \). For each \(i = 1, \ldots, N_1 \), from (3) that there exists a quadratic polynomial \(q_i \) such that

\[
\| f - q_i \|_{L_p(\omega_i)} \leq \rho_{d,3} \text{diam}(\omega_i)^3 |f|_{W^3_p(\omega_i)} \leq \frac{d^\frac{d}{2} \rho_{d,3}}{m^3} |f|_{W^3_p(\omega_i)},
\]

\[
|f - q_i|_{W^3_p(\omega_i)} \leq \rho_{d,3} \text{diam}(\omega_i)^2 |f|_{W^2_p(\omega_i)} \leq \frac{d \rho_{d,3}}{m^2} |f|_{W^2_p(\omega_i)},
\]

\[
|f - q_i|_{W^2_p(\omega_i)} \leq \rho_{d,3} \text{diam}(\omega_i) |f|_{W^1_p(\omega_i)} \leq \frac{\sqrt{d \rho_{d,3}}}{m} |f|_{W^1_p(\omega_i)}.
\]

By using (31) and the notation therein, let \(q_i = q_i^{(1)} + q_i^{(2)} \) where

\[
q_i^{(1)} = \sum_{\nu=1}^d a_\nu x_\nu^2, \quad \text{and} \quad q_i^{(2)} = \sum_{\nu=1}^d \sum_{\mu=\nu+1}^d b_{\nu\mu}(x_\nu + x_\mu)^2.
\]

For fixed \(\nu = 1, \ldots, d \) and \(j = 1, \ldots, N_2 \), there exists \(c_j \) such that the \(\nu \)-th side of \(\omega_{ij}^{(\nu)} \) is given by \([c_i, c_i + \frac{1}{mN_2}]\). Considering the linear polynomial
\[s_i^{(1)} = \sum_{j=1}^{N_2} \sum_{\nu=1}^{d} (2a_{\nu}c_j x_{\nu} - a_{\nu}c_j^2) \chi_{\omega(j)^{\nu}}, \] clearly

\[
\|q_i^{(1)} - s_i^{(1)}\|_{L_p(\omega_i)} \leq d^{p-1} \sum_{j=1}^{N_2} \sum_{\nu=1}^{d} \int_{\omega_{ij}} |a_{\nu}|^p |x_{\nu} - c_j|^{2p} dx
\]

\[
= d^{p-1} \sum_{j=1}^{N_2} \sum_{\nu=1}^{d} \frac{1}{m^{d-1}} \int_{c_j}^{c_j + \frac{1}{mN_2}} |a_{\nu}|^p |x_{\nu} - c_j|^{2p} dx \\
= d^{p-1} \sum_{j=1}^{N_2} \sum_{\nu=1}^{d} \frac{1}{m^{d-1}} \int_{0}^{\frac{1}{mN_2}} |a_{\nu}|^p |x_{\nu}|^{2p} dx \\
= d^{p-1} \sum_{\nu=1}^{d} \frac{|a_{\nu}|^p}{(2p + 1)m^d} \left(\frac{1}{mN_2} \right)^{2p}.
\] (38)

By using the inequality between the arithmetic and the \(p \)-power means, together with (37), for each \(i = 1, \ldots, N_1 \), we have

\[
\sum_{\nu=1}^{d} \frac{|a_{\nu}|^p}{m^d} = \sum_{\nu=1}^{d} \int_{\omega_i} |\frac{1}{2} D_{x_{\nu}x_{\nu}, q_i}(x) - \frac{1}{2} \sum_{\mu \neq \nu} D_{x_{\nu}x_{\mu}, q_i}(x)|^p dx \\
\leq 2^{p-2} \sum_{\nu=1}^{d} \int_{\omega_i} \left(|D_{x_{\nu}x_{\nu}}(q_i - f)(x)|^p + \left| \sum_{\mu \neq \nu} D_{x_{\nu}x_{\mu}}(q_i - f)(x) \right|^p \right) dx \\
+ 2^p |f|^p_{W^{3}_p(\omega_i)} \\
\leq 2^p d^{p-1} \left(\frac{\sqrt{d} \rho_{d,3}}{m} \right)^{3p} |f|^p_{W^{3}_p(\omega_i)} + 2^p |f|^p_{W^{2}_p(\omega_i)}, \] (39)

and (38) becomes

\[
\|q_i^{(1)} - s_i^{(1)}\|_{L_p(\omega_i)} \leq \left(\frac{2d}{m^2 N_2^2} \right)^p \left(d^{p-1} \left(\frac{\sqrt{d} \rho_{d,3}}{m} \right)^{3p} |f|^p_{W^{3}_p(\omega_i)} + |f|^p_{W^{2}_p(\omega_i)} \right).
\] (40)

Given \(\nu = 1, \ldots, d \) and \(\mu = \nu + 1, \ldots, d \), there exists \(b_j \) such that the \(\nu \)-th side of \(\omega_{ij}^{(\nu, \mu)} \) lies between the hyperplanes \(x_{\nu} + x_{\mu} = b_j \) and \(x_{\nu} + x_{\mu} = b_j + w \) where \(0 < w \leq \frac{\sqrt{d}}{mN_2} \). Consider the linear polynomial

\[
s_i^{(2)} = \sum_{j=1}^{N_2} \sum_{\nu=1}^{d} \sum_{\mu=\nu+1}^{d} 2b_j b_{\nu\mu} (x_{\nu} + x_{\mu} - b_j) \chi_{\omega_{ij}^{(\nu, \mu)}}.
\]

By using the change of variable \(X = x_{\nu} + x_{\mu} \) and \(Y = x_{\nu} - x_{\mu} \), where
\(b_j \leq X \leq b_j + w \) and the range of \(Y \) is at most \(\frac{\sqrt{d}}{m} \), we have

\[
\| q_i^{(2)} - s_i^{(2)} \|^p_{L^p(\omega)} \leq d^{2p-2} \left(\frac{1}{m^2 N_2} \right)^p \left(\left(\frac{\sqrt{d} \rho_{d,3}}{m} \right)^p |f|^{p}_{W^2_p(\omega)} + |f|^{p}_{W^2_{p}(\omega)} \right).
\]

(43)

With \(s_i = s_i^{(1)} + s_i^{(2)} \), combining (40) and (43) yields

\[
\| q_i - s_i \|^p_{L^p(\omega)} \leq 2^{p-1} \| q_i^{(1)} - s_i^{(1)} \|^p_{L^p(\omega)} + 2^{p-1} \| q_i^{(2)} - s_i^{(2)} \|^p_{L^p(\omega)}
\]

(44)

The inequality \(\max\{m^{-3}, (m N_2)^{-2}\} \leq 4^{(d+1)/2} \| p_m \|_{-6/(2d+1)} \) is easily provable. Considering \(s = \sum_{i=1}^{N_1} s_i \chi_{\omega_i} \) and \(q = \sum_{i=1}^{N_1} q_i \chi_{\omega_i} \), (35) and (44) imply

\[
\| f - s \|^p \leq \left(\sum_{i=1}^{N_1} \| f - q_i \|^p_{L^p(\omega)} \right)^{1/p} + \left(\sum_{i=1}^{N_1} \| q_i - s_i \|^p_{L^p(\omega)} \right)^{1/p}
\]

\[
\leq \frac{d^{3/2} \rho_{d,3}}{m^2} \| f \|_{W^2_p(\Omega)} + 4d^{3/2} \| f \|_{W^2_p(\Omega)} + 6d \left(\frac{\sqrt{d} \rho_{d,3}}{m N_2^2} + 1 \right) \left(|f|_{W^2_p(\Omega)} + |f|_{W^2_p(\Omega)} \right)
\]

\[
\leq C_1 \rho_{d,3} \| f \|_{W^2_p(\Omega)} + C_1 \rho_{d,3} |f|_{W^2_p(\Omega)}.
\]

(45)
where \(C_1 = 4^{(d+1)6/(2d+1)}(d^{2d} \rho_{d,3} + 10d^3(\sqrt{d} \rho_{d,3} + 1)) \), and the result (33) is proved.

For each \(i = 1, \ldots, N_1 \), by using the triangle inequality, we observe that

\[
|q_i - s_i|_{W^p_1(\omega_i)}^p \leq (2d)^{p-1} \sum_{\nu=1}^d \left(\|D_{x\nu}(q_i^{(1)} - s_i^{(1)})\|_{L^p(\omega_i)}^p + \|D_{x\nu}(q_i^{(2)} - s_i^{(2)})\|_{L^p(\omega_i)}^p \right).
\]

On one hand, a direct computation shows that, for each \(\nu = 1, \ldots, d \),

\[
\|D_{x\nu}(q_i^{(1)} - s_i^{(1)})\|_{L^p(\omega_i)}^p = \frac{2p}{p+1} |a_\nu|^p \left(\frac{1}{mN_2} \right)^p. \tag{45}
\]

On another hand, since for each \(k = 1, \ldots, d \),

\[
D_{x_k} \left(\sum_{\nu=1}^d \sum_{\mu=\nu+1}^d b_{\nu\mu} (x_\nu + x_\mu)^2 \right) = \sum_{\mu \neq k}^d 2b_{k\mu}(x_k + x_\mu),
\]

and

\[
D_{x_k} \left(\sum_{j=1}^{N_2} \sum_{\nu=1}^d \sum_{\mu=1}^d 2b_{\nu\mu} b_j (x_\nu + x_\mu) - b_{\nu\mu} b_j^2 \right) = \sum_{j=1}^{N_2} \sum_{\mu \neq k}^d 2b_{k\mu} b_j,
\]

we deduce that

\[
\|D_{x_k}(q_i^{(2)} - s_i^{(2)})\|_{L^p(\omega_i)}^p \leq d^{p-1} \sum_{j=1}^{N_2} \sum_{\mu \neq k}^d |2b_{k\mu}|^p \int_{\omega_i^{(\mu)}} |x_k + x_\mu - b_j|^p dx
\]

\[
\leq d^{p-1} \sum_{j=1}^{N_2} \sum_{\mu \neq k}^d |2b_{k\mu}|^p \left(\frac{\sqrt{d}}{m^{d-1}} \int_{b_j}^{b_j + \sqrt{d}} |X - b_j|^p dX \right)
\]

\[
= d^{p-1} \sum_{j=1}^{N_2} \sum_{\mu \neq k}^d |2b_{k\mu}|^p \frac{\sqrt{d}}{m^{d-1}} \frac{1}{p+1} \left(\frac{\sqrt{d}}{mN_2} \right)^{p+1}
\]

\[
= \frac{d^{p-1} 2p}{p+1} \sum_{\mu \neq k}^d \frac{|b_{k\mu}|^p}{m^{d-1}} \left(\frac{1}{mN_2} \right)^p. \tag{46}
\]

by virtue of a change of variable \(X = x_\nu + x_\mu \), \(Y = x_\nu - x_\mu \) where \(b_j \leq X \leq b_j + \frac{\sqrt{d}}{mN_2} \) and the range of \(Y \) not more that \(\frac{\sqrt{d}}{m} \). From (45) and (46), together with (39) and (42), we find that

\[
|q_i - s_i|_{W^p_1(\omega_i)}^p \leq \left(\frac{1}{mN_2} \right)^p \left(\frac{2p-1}{p+1} \right)^{\frac{p}{m}} \left(\frac{\sqrt{d} \rho_{d,3}}{m} \right)^p \|f\|_{W^p_1(\omega_i)}^p + \|f\|_{W^p_1(\omega_i)}^p.
\tag{47}
\]
It is easy to show that $m^{-2} \leq (mN_2)^{-1} \leq 2\binom{d+1}{2}^{3/(2d+1)}|\mathcal{P}_m|^{-3/(2d+1)}$. We deduce from (36) and (47) that

$$|f - s|_{W^p_p(\Omega)} \leq \left(2^{p-1} \sum_{i=1}^{N_1} \left(|f - q_i|_{W^p_p(\omega_i)}^p + |q_i - s_i|_{W^p_p(\omega_i)}^p\right)\right)^{\frac{1}{p}} \leq C_2 |\mathcal{P}_m|^{-3/(2d+1)} (|f|_{W^p_p(\Omega)} + |f|_{W^p_p(\Omega)}),$$

where $C_2 = 4\binom{d+1}{2}^{3/(2d+1)} \left(d^2 \rho_{d,3} + (d^2 + 2)\sqrt{d}\rho_{d,3} + 1\right)$, hence (34).

\section*{Acknowledgment}

Partial support by the Engineering and Physical Sciences Research Council of Great Britain under grant EP/G036136/1, Numerical Algorithms and Intelligent Software (NAIS) for the Evolving HPC Platform, is gratefully acknowledged. The work of Fabien Rabarison was supported in part by a PhD fellowship from the Scottish Funding Council.

\section*{References}

